Code: ME5T3

III B.Tech - I Semester – Regular/Supplementary Examinations October 2019

HEAT TRANSFER (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

1.

- a) Write the Fourier rate equation for heat transfer by conduction. Give the physical significance of each term.
- b) Define thermal conductivity and explain its significance on heat transfer.
- c) What are the different types of boundary conditions?
- d) What is the difference between efficiency and effectiveness of fin?
- e) What is lumped system analysis? When it is applicable?
- f) Give a general equation for the rate of heat transfer by convection and define the coefficient of heat transfer.
- g) Sketch thermal and Hydro dynamic boundary layers when heat flows over a flat plate.
- h) Differentiate between Film wise and Drop wise condensation.

- i) Draw the temperature distribution in a concentric tube heat exchanger when operated under parallel and counter flow conditions.
- j) Distinguish between Black body and Grey body.
- k) Explain and state the reciprocity theorem.

PART – B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

- Derive general heat conduction equation in cylindrical co-ordinate system.
 16 M
- 3. a) Derive the general equation for the temperature distribution along a fin. State different boundary conditions and derive the equation for heat flow for an infinitely long fin. 10 M
 - b) Determine the time required to heat a steel plate of 24 mm thick from the initial temperature of 25° C to final temperature of 450° C by placing the plate into a furnace at 600° C. Take the following properties of steel k = 45.4 W/mC, C_p = 0.5 kJ/kg C, ρ = 7800 kg/m³, h (heat transfer coefficient between the plate and surroundings in the furnace) = 23.03 W/m² C. 6 M

- 4. a) What do you understand by the hydrodynamic and thermal boundary layers? Illustrate with reference to flow over a flat heated plate.8 M
 - b) A 5 cm diameter, 1.5 m long vertical tube at a uniform temperature of 100 °C is exposed to quiescent air at 20 °C. Calculate the rate of heat transfer from the surface to air. What would be the heat transfer rate if the tube were kept horizontally?
 8 M
- 5. a) Briefly explain the Nusselt's condensation theory on vertical plate by drawing temperature and velocity profiles. State the assumptions made.8 M
 - b) A counter flow tubular oil cooler is to be designed to cool 1500 kg/h of oil from 90^o C to 30^o C by means of water entering the cooler at 20^o C and leaving at 50^o C. Calculate the amount of water flow rate required and the transfer area. Take C_p of oil as 3 kJ/kgK and U = 1200 W/m²K. 8 M
- 6. a) Prove that intensity of radiation is given by $I_b = \pi E_b$ 8 M
 - b) Derive an expression of shape factor for the radiation heat exchange between two surfaces.8 M